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Introduction

• We are interested in the asymptotic behavior of non-linear
functionals of high-frequency observations of strongly
autocorrelated Gaussian random fields.

• By random fields, we mean stochastic processes with multiple
parameters.

• In particular, we study the “phase transition” from Gaussian
limits (central limit theorems) to non-Gaussian limits.

• We are also interested in the qualitative differences between
the Gaussian and non-Gaussian limits (aside from
Gaussianity/non-Gaussianity).
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Fractional Brownian motion

• Let ZH = {ZH(t) : t ∈ R} be a fractional Brownian motion
(fBm) with Hurst parameter H ∈ (0, 1).

• That is, ZH is a centered Gaussian process with covariance

E[ZH(t)ZH(s)] =
1

2

(
|t|2H + |s|2H − |t − s|2H

)
, t, s ∈ R.

• Specifically, we represent ZH as ZH(t) =
∫
R GH(t, u)dW (u),

t ∈ R, where W is a standard Brownian motion and

GH(t, u) := C (H)
(
(t − u)

H− 1
2

+ − (−u)
H− 1

2
+

)
, t, u ∈ R,

is the Mandelbrot–Van Ness kernel. Above, x+ := max(x , 0)
and C (H) > 0 is a constant that depends on H.
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Hermite polynomials

• Let Pk , k = 1, 2, . . ., be the Hermite polynomials given by

P1(x) = x ,

P2(x) = x2 − 1,

P3(x) = x3 − 3x ,

P4(x) = x4 − 6x2 + 3,

...

• They are orthogonal polynomials with respect to the Gaussian
measure on R.
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Hermite variations

• Let k ≥ 2 and n ∈ N.

• The k-th Hermite variation of the fBm ZH on the grid
{1/n : 0, 1, 2, . . . , n} is defined as

V
(n)
k (t) :=

bntc∑
k=1

Pk

(
nH
(
ZH( i

n )− ZH( i−1
n )
))
, t ∈ [0, 1].

• The realizations of the process V
(n)
k belong to the Skorohod

space D([0, 1]).
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Functional central limit theorem

• It follows from the classical results of Breuer and Major
(1983) and Taqqu (1977) that if H ∈

(
0, 1− 1

2k

)
, then(

ZH , n
−1/2V

(n)
k

)
d−−−→

n→∞

(
ZH , C

′(H, k)B
)

in D([0, 1])2,

where C ′(H, k) > 0 is a constant and B is a standard
Brownian motion, independent of ZH .

• Moreover, in the critical case H = 1− 1
2k it follows that(

ZH , (n log n)−1/2V
(n)
k

)
d−−−→

n→∞

(
ZH , C

′(1− 1
2k , k)B

)
in D([0, 1])2.
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Non-central limit theorem

• When H ∈
(
1− 1

2k , 1
)
, the Hermite variations have a limit,

under suitable scaling, but the limit is non-Gaussian.

• More specifically, the result of Dobrushin and Major (1979)
implies a non-central limit theorem: for any t ∈ [0, 1],

n−(1−k(1−H))V
(n)
k (t)

L2

−−−→
n→∞

C ′(H, k)Y (t),

where {Y (t) : t ∈ [0, 1]} is a k-th order Hermite process with
Hurst parameter 1− k(1− H) ∈

(
1
2 , 1
)
.

• The Hermite process can be represented as a k-fold multiple
Wiener integral with respect to Brownian motion.

• The second-order Hermite process is also known as the
Rosenblatt process and its marginals are infinitely divisible.
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Fractional Brownian sheet

• The fractional Brownian sheet (fBs), introduced by Ayache,
Leger, and Pontier (2002), is an extension of the fBm to a
multiparameter setting.

• It is defined by taking the “tensor product” of the correlation
structures of multiple fBms with different Hurst parameters.

• More concretely, a d-parameter fBs with Hurst parameter
H = (H1, . . . ,Hd) ∈ (0, 1)d is a centered Gaussian process
{ZH(t) : t ∈ Rd} with covariance

E[ZH(t)ZH(u)] =
d∏
ν=1

1

2

(
|tν |2Hν + |uν |2Hν − |tν − uν |2Hν

)
,

for t = (t1, . . . , td), u = (u1, . . . , ud) ∈ Rd .
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Fractional Brownian sheet (continued)

• The fBs is self-similar and has stationary increments (in the
multiparameter sense). Moreover, it admits a continuous
modification.

• But the smoothness properties of the realizations depend on
the direction (anisotropy).

• Obviously, in the case d = 1 we recover the fBm.

• We will use the representation

ZH(t) =

∫
Rd

d∏
ν=1

GHν (tν , sν)W(ds1, . . . , dsd), t ∈ Rd ,

where GH is the Mandelbrot–Van Ness kernel and
{W(A) : A ∈ Bb(Rd)} is a white noise on Rd .
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Simulation of the two-parameter fBs
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Simulation of the two-parameter fBs
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Simulation of the two-parameter fBs

s

0.0

0.2

0.4

0.6

0.8

1.0

t

0.0

0.2

0.4

0.6

0.8

1.0

Z
(s,t)

0.0

0.1

0.2

0.3

0.4

H = (0.9,0.9)



Review of the one-parameter case Fractional Brownian sheet Functional limit theorems

Simulation of the two-parameter fBs
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Simulation of the two-parameter fBs
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Overview

• We want to extend the limit theorems for the fBm (as seen in
the beginning) to the multiparameter setting with the fBs.

• Instead of Hermite variations, we consider more general
functionals, generalized variations, where the Hermite
polynomial is replaced with a more general function.

• When is the limit Gaussian?
• Consider, e.g., the non-obvious case where H1 is in the

Gaussian regime and H2 is in the non-Gaussian one.

• We extend the results of Réveillac, Stauch, and Tudor (2012).
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Increments in the multiparameter setting

• Consider a function h : Rd → R.

• The increment of h over a hyper-rectangle

[a,b) = [a1, b1)× · · · × [ad , bd),

where a, b ∈ Rd , is given by

h([a,b)) :=
∑

i∈{0,1}d
(−1)d−

∑d
ν=1 iνh

(
(1− i)a + ib

)
.

(Above, vectors are multiplied component-wise.)

• This definition can be recovered by differencing iteratively
with respect to each of the arguments of the function h.
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Generalized variations

• Let f : R→ R be a measurable function such that
E[f (ξ)2] <∞ and E[f (ξ)] = 0 with ξ ∼ N(0, 1).

• Moreover, for i ∈ Nd and n ∈ N, denote

�(n)
i :=

[
i1 − 1

n
,
i1
n

)
× · · · ×

[
id − 1

n
,
id
n

)
.

• We study the generalized variations of the fBs ZH,

U
(n)
f (t) :=

∑
1≤i≤bntc

f
(
n
∑d

ν=1 HνZH

(
�(n)

i

))
, t ∈ [0, 1]d ,

for n ∈ N. (Above, all operations and relations involving
vectors are understood component-wise.)

• The realizations of U
(n)
f belong to the multiparameter

Skorohod space D([0, 1]d).
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Hermite expansion

• The function f can be expanded in L2(R, γ), where γ stands
for the N(0, 1) distribution, using Hermite polynomials as

f (x) =
∞∑
k=k

akPk(x),

where ak , ak+1, . . . are such that ak 6= 0 and
∑∞

k=k k!a2
k <∞.

• The index k ∈ N is known as the Hermite rank of f .

Standing assumption

The coefficients ak , ak+1, . . . satisfy
∑∞

k=k 3
k
2

√
k!|ak | <∞.
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Rescaling

• The generalized variations need to be rescaled, in a way that
depends on H and k , to ensure convergence.

• To this end, we define for any ν = 1, . . . , d and n ∈ N,

τ (n)
ν :=


n−

1
2 , Hν ∈

(
0, 1− 1

2k

)
,

(n log n)−
1
2 , Hν = 1− 1

2k ,

n−(1−k(1−Hν)), Hν ∈
(
1− 1

2k , 1
)
.

• We define the rescaled variations by

U
(n)
f :=

( d∏
ν=1

τ (n)
ν

)
U

(n)
f , n ∈ N.
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Functional central limit theorem

Theorem

Suppose that H ∈ (0, 1)d \
(
1− 1

2k , 1
)d
. Then,(

ZH, U
(n)
f

)
d−−−→

n→∞

(
ZH, C

′′(H, f )Z̃H̃

)
in D([0, 1]d)2,

where C ′′(H, f ) > 0 is a constant and Z̃H̃ is a new fBs,

independent of ZH, with Hurst parameter H̃ ∈ [ 1
2 , 1)d given by

H̃ν =

{
1
2 , Hν ∈

(
0, 1− 1

2k

]
,

1− k(1− Hν), Hν ∈
(
1− 1

2k , 1
)
,

for any ν = 1, . . . , d .
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Hermite sheet

• To describe the limit in the case H ∈
(
1− 1

2k , 1
)d

, we need
the so-called Hermite sheet.

• A k-th order d-parameter Hermite sheet with Hurst parameter

H ∈
(

1
2 , 1
)d

is a process {YH(t) : t ∈ [0,∞)d} given by

YH(t) :=

∫
(Rd )k

J
(k)
H

(
t,u(1), . . . ,u(k)

)
W(du(1)) · · ·W(du(k)),

where W is the white noise on Rd and

J
(k)
H

(
t,u(1), . . . ,u(k)

)
:= C ′′′(H, k)

∫
[0,t)

k∏
κ=1

d∏
ν=1

(
yν − u(κ)

ν

)− 1
2
− 1−Hν

k
+

dy

for t ∈ [0,∞)d and u(1), . . . ,u(k) ∈ Rd , with constant
C ′′′(H, k) > 0.



Review of the one-parameter case Fractional Brownian sheet Functional limit theorems

Hermite sheet (continued)

• This representation of the Hermite sheet is due to Clarke de la
Cerda and Tudor (2014).

• The Hermite sheet has the same correlation structure (and
self-similarity properties) as the fBs, but it is non-Gaussian
whenever k ≥ 2.

• In the case k = 1 it coincides with the fBs.

• In the case d = 1 it reduces to the Hermite process.
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Functional non-central limit theorem

Theorem

Suppose that H ∈
(
1− 1

2k , 1
)d
. Then,

U
(n)
f

p−−−→
n→∞

C ′′′′(H, f )YH̃ in D([0, 1]d),

where C ′′′′(H, f ) > 0 is a constant and YH̃ is a k-th order Hermite

sheet with Hurst parameter H̃ ∈ ( 1
2 , 1)d given by

H̃ν = 1− k(1− Hν) for any ν = 1, . . . , d .

Remark

The Hermite sheet YH̃ is driven by the same white noise W as the
original fBs ZH.
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